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Abstract-The problem of mixed convection flow about a vertical, cylindrical fin embedded in a porous 
medium is studied analytically based on the conjugate convection+onduction theory. A local nonsimilarity 
solution, up to the third level of truncation, is obtained for the convective flow in the porous medium. The 
resulting set ofordinary differential equations are coupled with the one-dimensional heat conduction equation 
in the fin through interfacial conditions. The effects of the conjugate convection-conduction parameter, 
surface curvature and the mixed convection parameter on the fin temperature distribution, local heat transfer 
coefficient,local heat flux, total heat transfer and fin efficiency are illustrated. The results of the present analysis 

are found to have trends similar to those of the classical fluids. 

INTRODUCTION 

DURING the past few years, the problems of conjugate 
heat transfer from a fin have received much attention 
[l-S]. Results of these analyses have shown that the 
local heat transfer coefficient varies along the fin. This is 
in direct contrast with the conventional assumption 
that the local heat transfer coefficient is constant along a 
fin.Thevariations of the heat transfer coefficient are due 
to the interaction between the fin and its adjacent 
boundary-layer flow. Thus, in the analysis of heat 
transfer from a long fin, it is more realistic to leave the 
heat transfer coefficient unspecified and to treat it as 
part of the solution. 

In a recent paper [6], the problem of conjugate, 
mixed convection heat transfer from a vertical plate fin 
embedded in a porous medium was analyzed by Liu et 
al. Results were found to be similar to those of the 
classical fluids [S]. In particular, for a high convection- 
conduction parameter, the local heat transfer 
coefficient was found to decrease at first, attain a 
minimum, and then increase in the streamwise 
direction. In the present investigation, attention is 
given to the analysis of mixed convection flow over a 
vertical, cylindrical fin embedded in a porous medium 
with fin-fluid interactions taken into consideration. 
Since the heat transfer coefficient along the fin is not 
prescribed u priori, it is necessary to solve the heat 
conduction problem in the fin and the boundary-layer 
flow adjacent to the fin simultaneously. Because the 
mixed convective flow in the porous medium does not 
have a similarity solution, a solution based on the local 
nonsimilarity model is applied. The resulting set of 
ordinary differential equations for the boundary-layer 
flow are coupled with the heat conduction equation 
through the interfacial conditions. The entire set of 
equations were solved numerically by iteration [6-81. 
Computations were carried out for fin temperature 
distribution, the local heat transfer coefficient, the local 

heat flux, the total heat transfer rate and the fin 
efficiency at different values of the controlling 
parameters. 

ANALYSIS 

Consider a vertical cylindrical fin of radius r0 and 
length L, which is embedded in an isotropic, porous 
medium at an ambient temperature of T,. The base of 
the fin is attached to a planar wall at Tb which is higher 
than T,. A schematic diagram of the cylindrical fin is 
presented in Fig. 1 where the origin of the cylindrical 
coordinate is placed on the tip of the fin, with x and I 
denoting the vertical(axial)and radial coordinates. The 
coordinate system is oriented such that the gravi- 
tational force acts in the negative x-direction. At free 
stream, a uniform flow with u, is flowing in the positive 
x-direction (i.e. vertically upward). Thus, the buoyancy 
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FIG. 1. Schematic diagram of the physical problem. 
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NOMENCLATURE 

f dimensionless streamfunction defined by Greek symbols 
equation (14) 

G auxiliary velocity function, af /at ; 

equivalent thermal diffusivity 
coefficient of thermal expansion 

9 acceleration due to gravity 
Gr Grashof number, [g/X( & - T&]/v2 
h local heat transfer coefficient 
h* dimensionless local heat transfer coefficient 
H auxiliary velocity function, aG/dg 
K permeability of the porous medium 
k thermal conductivity of the porous 

medium 
k, conductivity of the fin 
Ncc conjugate convection+onduction 

parameter defined by equation (4) 
Pe P&let number, u,L/u 
Pr Prandtl number, v/u 

4 local heat flux 
r coordinate in the transverse direction 

r0 radius of the cylindrical fin 
Re Reynolds number, u, L /v 
T temperature 
u Darcy’s velocity component in the 

x-direction 
v Darcy’s velocity component in the 

r-direction 
X coordinate in the axial direction. 

9 pseudosimilarity variable defined by 
equation (14) 

qerr efficiency of the fin 
5 dimensionless variable in the x-direction 
0 dimensionless temperature of the fluid 

defined by equation (13) 
I surface curvature parameter defined by 

equation (19) 

IJ viscosity of the convective fluid in the 
porous medium 

V kinematic viscosity of the convective fluid 
p density of the convective fluid 
$J auxiliary temperature function, 1%3/a< 
x auxiliary temperature function, a+/ag 
1,5 streamfunction defined by equation (9) 
Q buoyancy force parameter, Gr/Re. 

Subscripts 
co condition at infinity 
b condition at the fin base 
f variable associated with the fin. 

force is acting in the same direction as the external flow. 
If the radius of the fin r. is small compared with the 

length of the fin L, heat conduction within the fin can be 
considered to be one-dimensional. It follows that the 
governing equation for temperature distribution along 
the fin Tr is 

k,r, $ = h(x)(T,- T,) 

where k, is the thermal conductivity of the fin and the 
h(x) is the local heat transfer coefficient which is to be 
determined. The boundary conditions for the fin are 

x=L: Tf=& (2) 

x=0: dT’=o 
dx 

where an adiabatic boundary condition at the tip of the 
fin is assumed. Equation (1) can be rewritten in the 
following dimensionless form : 

$ = (Ncc) h*(t)& 

where Or = (Tr- T,)/(T,- T,) is the dimensionless 
temperature of the fin; 5 = x/L is the dimensionless 
distance; Ncc = (k/k,)(2L/r,),/Re is the conjugate 
convection-conduction parameter with k denoting the 
thermal conductivity of the porous medium and 

Re = u,LJv denoting the Reynolds number; and 
h*(t) = hL/k,/Re is the dimensionless local heat 
transfer coefficient which remains to be determined. 
Equations (2) and (3) in terms of the dimensionless tem- 
perature are 

<=l: e,=1 (5) 

w 
5=o: z=O. 

If the Boussinesq approximation and the boundary- 
layer approximation are invoked and the Darcy’s law is 
applicable, the governing equations in a cylindrical 
coordinate for flow in the porous medium are [9] 

a iatj ( > PJSK aT - -- =-- 
ar r ar P ar 

a aT (>( a* az- a$ aT ----- 
“5 ‘TiY = ar ax ax ar > 

(8) 

where pm, p and b are the density of the fluid at infinity, 
the viscosity and thermal expansion coefficient of the 
fluid, respectively; K is the permeability of the porous 
medium; a is the equivalent thermal diffusivity of the 
saturated porous medium; g is the gravitational 
acceleration ; and T is the temperature of the fluid 
which is in thermal equilibrium with the porous 
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medium. The streamfunction IJ is defined as reduces to that of a plate fin [6]. Equations (10) and (11) 

n=!!!!k and ,=_!!!k 
after the transformation become 

I ar r ax 
(9a, b) 

C $ (0,5) +!J(O, <) = 0, 0 = (0,5) (2Oa, b) 
where u and v are the Darcian velocities in the x- and r- 
directions, respectively. .I-‘(=% 5) = 1, @co, 0 = 0. @la, b) 

Equations (7) and (8) are subject to the following 
boundary conditions : Equations (17H21) are coupled with (4H6) through 

a+ 
the following interface conditions 

r = r,,: ax = 0, T = T(x, rO) (lOa, b) r=rO: T(x, 0) = T,(x) (22) 

and 
1 a+ y-tco: --=u,, 
r ar 

T= T, (lk b) 
r =rO: 4; = h(x)(T,-T,) (23) 

where T(x, r,,) is the temperature of the fluid along the 
where equation (22) requires that temperature is 

impermeable surface of the fin. 
continuous while equation (23) requires that heat flux is 

As a first step toward solvingequations(7Hl l), these 
continuous across the fin-fluid interface. Equations 

equations are first transformed through an appropriate 
(22) and (23) in terms of the new variables defined in 

set of new variables to reduce the axial dependence of 
(12H14) are 

the solution. For this purpose, the following @r(5) = @(O, 5) (24) 
transformations are introduced : 

ti = ~&u,Wfh 5) (12) 

(13) 

(14) 

where 5 is defined in equation (4). Substituting 
equations (12H14) into (9a, b) yields 

(15) 

(16) 

When the transformations given by equations (12)-(14) 
are applied to (7) and (8), there results 

(17) 

(18) 

where 

R = S/%T, - T,W/v2 = Gr,Re 

%sw 
is the mixed convection parameter which is a measure of 
the relative importance of the free to forced convection. 
The quantity 1 in equation (18) is defined as 

(19) 

which is a measure of the surface curvature of the 
vertical cylinder. It is relevant to note that 1 = 0 

h*(t) = Jpr [-@To, 01 
Jw) 

(25) 

where Pr = v/u is the Prandtl number. Equations (4t 
(6) and (17H21) with (24) and (25) constitute the 
governing equations and boundary conditions for the 
present problem. 

Local nonsimilarity solution 
Equations (17H21) show that the boundary-layer 

flow in the porous medium does not admit a similarity 
solution. The nonsimilarities arise from the surface 
curvature ofthe cylindrical fin, the buoyancy force term 
and the nonuniform temperature distribution of the fin. 

Equations (17)-(21) will now be approximated by a 
set of ordinary differential equations by the local 
nonsimilarity method [7,8]. Following the standard 
procedure [7,8], one can derive an approximate set of 
ordinary differential equations for each ‘level of 
truncation’, which is designated for the elimination of 
terms involving c-derivatives in the governing 
equations at different stages of development. 

For the first level of truncation, the terms involving 
af/ag or i30/ag are deleted in equations (18) and (20a) 
which lead to 

(l+aJ&)B"+(+f+1qq)8 = 0 (27) 

f(0, 5) = 0, w4 5) = 4(t) (2% W 

f'(Oo,5) = 1, &ah 5) = 0 (2% W 

where the primes are the derivatives with respect to q. It 
is pertinent to note that 5 plays the role ofa parameter in 
equations (26H29). 

For the second level of truncation, new functions 
G = af/c?( and C$ = %/at are introduced in equations 
(18) and (20a). With this insertion, all terms in (18) and 
(20a) are retained without approximation. Additional 
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equations and boundary conditions for the new 
unknowns G and 4 are generated by taking derivatives of 
(17)(21) with respect to Ej and discarding the terms 
containing aG/a[ and &$jag. This leads to the following 
equations and boundary conditions for the second level of 
truncation : 

f”=ne (30) 

(1 +L,,‘&)@‘+(:f+Lfi)0’ = &-‘+-6’G) (31) 

G”=$&#J’ (32) 

(1 +&/&)fl+W+@+5G)$’ 

with 

f(0, 5) = 0, W, 5) = 0 (34a, b) 

W, 5) = e,(r), 4(0,5) = $(O (35a b) 

f(C0,5) = 1, G’(Q5) = 0 (36a, b) 

8(co, 5) = 0, 4(00,0 = 0. (37a b) 

Similarly, the equations and boundary conditions for the 
third level of truncation are 

f”=W (38) 

(l+~r#“+(i-f+I&)f?’ = 5cf’4-@‘G) (39) 

c,,=&#j (40) 

(l+J&W’+(~~+~&+W$ =U’+WM 

(41) 

H” = g-Q’ (42) 

(l+Q%l)X”+(rf+U+rG)X 

-(iH--&)e (43) 

with 

J-(0,5) = 0, G(O, 5) = 0, WO, 5) = 0 (4% b, 4 

WI 0 = @f(r), m <I’= f$ (5b x(0,5) = g$ (t) 
(45a, b, c) 

f(co, <) = 1, G’(co, <) = 0, H’(m, 5) = 0 
(46a, b, c) 

&co, 5) = 0, b(co, 0 = 0, x(a, t) = 0 
(47a, b, c) 

where H = aGja< and x = @/a<. 

RESULTS AND DISCUSSION 

Both the heat conduction equation for the fm and the 
local nonsimilarity equations for the convective flow in 
the porous medium are second-order ordinary differential 
equations with two-point boundary conditions. These 
coupled equations can be converted into an integral form 
and numerical solutions can be obtained by iteration. The 
details of the procedure are described in ref. [6] and will 
not be repeated here. Computations were carried out up 
to the third level of truncation with selected values of I, Q, 
Ncc and at a Prandtl number of 5.5. The following are the 
results based on the third level of truncation. 

Fin temperature distributions 
Figures 2 and 3 present tin temperature distributions 

for 1 = 2.0 and 5.0 and for representative values of Ncc 
and 0. It is observed that the fin temperatures increase 
monotonically from the tip ({ = 0.0) to the base (5: = 
1.0) for all cases. Also, it is seen that larger values of Ncc 
give rise to larger fin temperature variations. This 
behavior is evident from the definition of Ncc which 
shows that higher values of Ncc correspond to low fin 
conductances and high convection effects, thus 
resulting in increased temperature variations. In 
addition, higher values of R amplify these variations 
due to the fact that buoyancy force enhances the heat 
transfer rates. The figures also show that higher values 
of I also give rise to more significant fin temperature 
variations. 

Local heat transfer coefficients 
The local heat transfer coefficient is defined as 

h(x) = ,“‘,=- (48) 
f m 

which in a dimensionless form becomes 

Representative distributions for A = 2.0 and 5.0, and 
selected values of Ncc and Q are presented in Figs. 4 and 
5. The figures show that when Q = 0.0 (pure forced 
convection), the heat transfer coefficients decrease 
monotonically from large values near the tip to some 
finite values at the root for all values of Ncc and 1. For a 
mixed convection flow (a # 0.0) an increase of Ncc, 
representing an increase of fin temperature variations, 
gives rise to an enhanced buoyancy force along the 
streamwise direction. Therefore, at a high value of Ncc 
(Ncc = 1.5, for example) the local heat transfer 
coefficients decrease at first, attain a minimum value, 
and then increase with increasing streamwise direction. 
It is also observed that as Ncc increases, the location of 
the minimum shifts toward the tip, and the extent of the 
downstream rise becomes greater. Also, for given values 
of Ncc and Jz, higher local heat transfer coefficients are 
seen at higher values of L. 
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FIG. 2. Fin temperature distributions for A= 2. 
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FIG. 3. Fin temperature distributions for I = 5. 
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FIG. 4. Local heat transfer coefficients for I = 2. FIG. 6. Local heat fluxes for L = 2. 
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FIG. 5. Local heat transfer coefficients for 1 = 5. 

Local heat fluxes 
The local heat flux can be expressed as 

which can be cast in dimensionless form as 

(50) 

9L [ WA 511 

. wb - L)& =Jpr -A . (51) 
The results of dimensionless local heat fluxes are 

given in Figs. 6 and 7. It can be seen that for a given 1, the 
buoyancy force increases the local heat flux. Also, as the 
value of Ncc is increased, most of the heat transfer to 
the fluid takes place in the neighborhood of the fin root. 
This is due to the fact that a larger Ncc, representing a 
lower thermal conductivity of the fin, results in a higher 
temperature near the root. 

4. 
k (T&.,)6 
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FIG. 7. Local heat fluxes for I = 5. 

If the results in Fig. 6 are compared with those in Fig. 
7, one can see that the local heat flux is higher for a 
higher value of 1. However, one should note that the 
radius of a fin could be different for each 2. Thus, lower 
values of the local heat flux for low 1s do not necessarily 
imply that the total heat flux over the fin surface is lower 
than that for larger Rs. This will be discussed further 
below. 

Total heat transfer rate 
The total heat transfer rate can be obtained from 

s L 

Q = 2xr, q(x) dx = -2m,k dx (52) 
0 

which can be rewritten in dimensionless form as 

Q 
~ = -2fi F(R, 1, Ncc) 

mOk( Tb - T,)& 
(53) 

where 

F(Q a, Ncc) = c l WA 5) 
r d5. (54) 

Jo J5 0.8 

In the above expressions, both the LHS of equation (53) 
and the parameter Ncc contain ro. Thus, the effect of 
curvature on the total heat transfer rate cannot be 
observed directly from equation (53). To get rid of the 
r,-dependence, both the LHS of equation (53) and Ncc 
are divided by 1 to give 

Q 
4kL(T,- T,) 

= --nF[R, 1, (Pe Re)“‘k/k,] (55) 

where Ncc/l = (Pe Re)‘l’k/k, with Pe = u,L/u denot- 
ing the P&let number. Equation (55) is plotted as 
Q/4kL(T,- T,) vs (Pe Re)‘l’k/k, at selected values of 1 
and R in Fig. 8. It is shown that smaller values of 1 gives 
rise to higher value of the total heat transfer rate. This is 
expected, as a smaller value of 1 represents a larger 

0. I I I I 
0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 8. Total heat transfer rates. 

value of r. (i.e. a larger convection surface), and 
therefore results in a larger value of the total heat 
transfer rate. 

Fin ejiciency 
The fin efficiency is defined as 

? err = Q/Qiso (56) 
where Qiso denotes the total heat transfer rate resulting 
from an isothermal fin. The results of q,rf vs 
(Pe Re)“‘k/k, are presented in Fig. 9 for representative 
values of 1 and a. These results indicate that a high 
value of 1 (representing a smaller radius) gives rise to a 
smaller fin efficiency as expected. Also, the efficiency 
decreases as n or (Re Pe)‘12k/kf is increased. 

CONCLUDING REMARKS 

The present analysis has yielded the solution of 
conjugate, mixed convectionconduction heat transfer 
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FIG. 9. Fin efficiencies. 
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about a vertical. cvlindrical fin embedded in a Dorous a vertical rectangular fin, Int. Comm. Heat Mass Transfer , < 
medium. The trends ofthe results obtained in this paper 10, 267-276 (1983). 

are similar to those of plate fin solutions obtained in a 
4. M. J. Huang, C. K. Chen and J. W. Cleaver, Vertical circular 

previous study [6]. It should be noted that the plate fin 
pin with conjugated natural convection-conduction flow, 

solution may be obtained from the present analysis 
J. Heat Transfer 107,242-245 (1985). 

5. M. J. Huang and C. K. Chen, Conjugate mixed convection 
simply by letting i = 0, which implies an infinite radius, and conduction heat transfer along a vertical circular pin, 

or equivalently a flat plate. Int. J. Heat Mass Transfer 28, 523-529 (1985). 
6. J. Y. Liu, W. J. Minkowycz and P. Cheng, Conjugate mixed 

convection heat transfer analysis of a plate fin embedded in 
a porous medium, Numer. Heat Transfer 9, 453468 
(1986). 
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CONDUCTION THERMIQUE COUPLEE A LA CONVECTION MIXTE, LE LONG D’UNE 
AILETTE CYLINDRIQUE DANS UN MILIEU POREUX 

R&sum&-On &udie analytiquement le problime de la convection mixte autour d’une ailette verticale, 
cylindrique, noy&e dans un milieu poreux, g partir de la thCorie du couplage convection-conduction. Une 
solution locale non affine, jusqu’au troisi&me niveau de troncature, est obtenue pour la convection dans le 
milieu poreux. Le systtme d’&quations diffkrentielles est couplt: g l’bquation monodimensionnelle de 
conduction dans l’ailette & travers les conditions g l’interface. On illustre les effets du paramtitre de couplage 
convection~onduction,delacourburedelasurfaceetduparam~tredeconvectionmixte,surladistributionde 
tempkrature, sur le coefficient de transfert local, sur le flux local, le transfert thermique global et sur l’eflicacitt 
de l’ailette. Les rksultats de la presente 6tude ont des allures semblables a ceux relatifs aux fluides classiques. 

WARMEOBERTRAGUNG DURCH MISCH-KONVEKTION UND WjlRMELEITUNG 
ENTLANG EINER ZYLINDRISCHEN RIPPE IN EINEM PORdSEN MEDIUM 

Zusammenfassung-Die Misch-Konvektion an einer vertikalen, zylindrischen Rippe in einem por&en 
Medium wird analytisch mit Hilfe der Theorie der gekoppelten WBrmeiibertragung durch Konvektion und 
Leitung untersucht. Fiir die Konvektionsstriimung im porijsen Medium wird eine Grtliche nichtlhnliche 
L&ung ermittelt. Der gewonnene Satz gewijhnlicher Differentialgleichungen wird mit der Gleichung fiir 
die eindimensionale WLrmeleitung in der Rippe iiber Schnittstellenbedingungen gekoppelt. Die Einfliisse 
der Parameter der gekoppelten Wlrmeiibertragung, der Oberfichenform und der Misch-Konvektion auf 
die Temperaturverteilung in der Rippe, den iirtlichen und den gesamten WLrmeiibergangskoeffizienten, 
die iirtliche Wlrmestromdichte sowie auf den Rippenwirkungsgrad werden dargestellt. Die Ergebnisse 

dieser Untersuchung zeigen Abhiingigkeiten lhnlich wie bei klassischen Fluiden. 

COlIP%KEHHbIl? TEHJIOfIEPEHOC CMEIUAHHOn KOHBEKqMEti M 
rlPOBOflMMOCTbI0 OKOJIO qMJIWHAPMYECKOr0 PE6PA B I-IOPMCTOZi CPEAE 

AmrorasHa-Ha OCHOBCCOIlp%KCHHO~ IIOCTaHOBKll KOHBCKTHBHO-KOHJ,)'KTHBHOrO TeIIJIOO6MeHa aHaJIH- 

TWCCKM &l3,'XXTCR 3aA.a'W CMCUlaHHOKOHBeKTBBHOr0 TCWHAIl y BCpTAKaJlbHOrO uklnBHLZpH'IeCKOr0 

pe6pa, norpyxennoro a nopecTyr0 cpeny. JJnr KoHBeKTBBHoro TeveH5iK B nopscTo8 cpene nonyqeH0 

JIOKanbHOe HCaBTOMOfienbHOC pemeHEie.BbIBeAeHHaK B~3ynbTaTeCHCTeMa06bIKHOBeHHblX~l4C)@epeH- 

u&ianbHbrx ypaseeaal 06'benkiHKeTCn c ypaBHemieM OnuoMepHoro TennonepeHoca B pe6pe qepe3 

rpaHHVHb,eyCnOBH% nOKa3aHO BJIHIHHCCO~PRXCHHOTO KOHBCKTBBHO-KOHJ,YKT)1BHOTO napaMCTpa,Kpkf- 

BM3HbI IIOBCpXHOCTl4 Ii K03@#IAIlHCHTa CMtXJJaHHOii KOHBCKL,HH Ha paCI,pCJWXHHC TeMuepaTypbl pe6pa, 

noKanbHbrii Ko3~+mmeHTTennonepeHoca,noKanbHbrii TerIJIOO6MeH,o6Ulkiii Tennonepeuoc II+$~KTAB- 

HOCTbpe6pa.kJynbTaTbI aHanOrWiHb1 &lHHbIMJ,nK XklnKOCTCk 


