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Abstract—The problem of mixed convection flow about a vertical, cylindrical fin embedded in a porous
medium is studied analytically based on the conjugate convection—conduction theory. A local nonsimilarity
solution, up to the third level of truncation, is obtained for the convective flow in the porous medium. The
resulting set of ordinary differential equations are coupled with the one-dimensional heat conduction equation
in the fin through interfacial conditions. The effects of the conjugate convection—conduction parameter,
surface curvature and the mixed convection parameter on the fin temperature distribution, local heat transfer
coefficient, local heat flux, total heat transfer and fin efficiency are illustrated. The results of the present analysis
are found to have trends similar to those of the classical fluids.

INTRODUCTION

DURING the past few years, the problems of conjugate
heat transfer from a fin have received much attention
[1-5]. Results of these analyses have shown that the
local heat transfer coefficient varies along the fin. This is
in direct contrast with the conventional assumption
that the local heat transfer coefficient is constant alonga
fin. The variations of the heat transfer coefficient are due
to the interaction between the fin and its adjacent
boundary-layer flow. Thus, in the analysis of heat
transfer from a long fin, it is more realistic to leave the
heat transfer coefficient unspecified and to treat it as
part of the solution.

In a recent paper [6], the problem of conjugate,
mixed convection heat transfer from a vertical plate fin
embedded in a porous medium was analyzed by Liu et
al. Results were found to be similar to those of the
classical fluids [3]. In particular, for a high convection—
conduction parameter, the local heat transfer
coefficient was found to decrease at first, attain a
minimum, and then increase in the streamwise
direction. In the present investigation, attention is
given to the analysis of mixed convection flow over a
vertical, cylindrical fin embedded in a porous medium
with fin—fluid interactions taken into consideration.
Since the heat transfer coefficient along the fin is not
prescribed a priori, it is necessary to solve the heat
conduction problem in the fin and the boundary-layer
flow adjacent to the fin simultaneously. Because the
mixed convective flow in the porous medium does not
have a similarity solution, a solution based on the local
nonsimilarity model is applied. The resulting set of
ordinary differential equations for the boundary-layer
flow are coupled with the heat conduction equation
through the interfacial conditions. The entire set of
equations were solved numerically by iteration [6-8].
Computations were carried out for fin temperature
distribution, the local heat transfer coefficient, the local
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heat flux, the total heat transfer rate and the fin
efficiency at different values of the controlling
parameters.

ANALYSIS

Consider a vertical cylindrical fin of radius 7, and
length L, which is embedded in an isotropic, porous
medium at an ambient temperature of T,,. The base of
the fin is attached to a planar wall at T, which is higher
than T,. A schematic diagram of the cylindrical fin is
presented in Fig. 1 where the origin of the cylindrical
coordinate is placed on the tip of the fin, with x and r
denoting the vertical (axial)and radial coordinates. The
coordinate system is oriented such that the gravi-
tational force acts in the negative x-direction. At free
stream, a uniform flow with u,, is flowing in the positive
x-direction (i.e. vertically upward). Thus, the buoyancy
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FiG. 1. Schematic diagram of the physical problem.
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NOMENCLATURE

[ dimensionless streamfunction defined by Greek symbols

equation (14) o equivalent thermal diffusivity
G auxiliary velocity function, 0 f /3¢ B coefficient of thermal expansion
g acceleration due to gravity n  pseudosimilarity variable defined by
Gr Grashof number, [gBK(T, — T, )L]/¥? equation (14)
h  local heat transfer coefficient N cfficiency of the fin
h* dimensionless local heat transfer coefficient ¢ dimensionless variable in the x-direction
H auxiliary velocity function, 0G/d¢ 0 dimensionless temperature of the fluid
K- permeability of the porous medium- defined by equation (13)
k  thermal conductivity of the porous A surface curvature parameter defined by

medium equation (19)
ke conductivity of the fin u  viscosity of the convective fluid in the
Nce  conjugate convection—conduction porous medium

parameter defined by equation (4) v kinematic viscosity of the convective fluid
Pe Péclet number, u L/« p  density of the convective fluid
Pr Prandtl number, v/a ¢ auxiliary temperature function, 00/0¢
g local heat flux ¥  auxiliary temperature function, d¢/d¢
r  coordinate in the transverse direction Y streamfunction defined by equation (9)
ro radius of the cylindrical fin Q buoyancy force parameter, Gr/Re.
Re Reynolds number, uL/v
T temperature
u  Darcy’s velocity component in the Subscripts

x-direction

v Darcy’s velocity component in the
r-direction

x  coordinate in the axial direction.

oo condition at infinity
b condition at the fin base
f  variable associated with the fin,

forceis acting in the same direction as the external flow.
If the radius of the fin r, is small compared with the
length of the fin L, heat conduction within the fin can be
considered to be one-dimensional. It follows that the
governing equation for temperature distribution along
the fin T; is
2

d’T;
ko5 = h0)(T—T.) M

where k; is the thermal conductivity of the fin and the
h(x) is the local heat transfer coefficient which is to be
determined. The boundary conditions for the fin are

x=L T=T V)]
d7;

=0: —=0 3

x i 3)

where an adiabatic boundary condition at the tip of the
fin is assumed. Equation (1) can be rewritten in the
following dimensionless form:

d26;

@ (Nce) h*(£)0; @)
where 0, = (T;— T, )(T,—T,) is the dimensionless
temperature of the fin; & = x/L is the dimensionless
distance; Ncc = (k/k)(2L/ro)/Re is the conjugate
convection—conduction parameter with k denoting the
thermal conductivity of the porous medium and

Re =u_ L/v denoting the Reynolds number; and
h*(&) = hL/k\/Re is the dimensionless local heat
transfer coefficient which remains to be determined.
Equations (2) and (3) in terms of the dimensionless tem-
perature are

E=1: g=1 ()
—o. %0 _
=0 =0 (6)

If the Boussinesq approximation and the boundary-
layer approximation are invoked and the Darcy’s law is
applicable, the governing equations in a cylindrical
coordinate for flow in the porous medium are [9]

0 (10 pogPK oT
or\ror) u or
. o or oy 0T oy OT ®

— ¥ — = _— e — ————

or\  or or dx Ox or
where p, pand B are the density of the fluid at infinity,
the viscosity and thermal expansion coefficient of the
fluid, respectively ; K is the permeability of the porous
medium ; « is the equivalent thermal diffusivity of the
saturated porous medium; g is the gravitational

acceleration; and T is the temperature of the fluid
which is in thermal equilibrium with the porous

U
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medium. The streamfunction y is defined as

16!// 1oy
“roor and ”"_?a—

(9a,b)
where u and v are the Darcian velocities in the x- and r-
directions, respectively.

Equations (7) and (8) are subject to the following
boundary conditions:

0
rery: Y0 T=Twry) (10ab)
ox
and
y— 00! 1% =u,, T=T, (lla,b)
r or

where T(x, 7o) is the temperature of the fluid along the
impermeable surface of the fin.

Asafirststep toward solvingequations(7)-(11), these
equations are first transformed through an appropriate
set of new variables to reduce the axial dependence of
the solution. For this purpose, the following
transformations are introduced :

Y = rolouex)?f(n, &) (12)
T—T,
0, &)= T,-T, (13)
r?—rZ (u \'?
S w

where ¢ is defined in equation (4). Substituting
equations (12}{14) into (9a, b) yields

0
U=y Ei(n, <) (5)

2
() (1L er) o

When the transformations given by equations (12)(14)
are applied to (7) and (8), there results

2
TS _o%
on? én

520 0
(1+A\/Er/)a ‘ <f+ \[)an

~o(£2-2%) ug

U= —

an

on 0 on 0&
where
— T )L/v?
o PKG=TILN _ oo
u,L/v

is the mixed convection parameter which is a measure of
the relative importance of the free to forced convection.
The quantity A in equation (18) is defined as

2L

A= (19)

ro Uy, u L
which is a measure of the surface curvature of the
vertical cylinder. It is relevant to note that A =0

HMT 29:5-H

reduces to that of a plate fin [6]. Equations (10)and (11)
after the transformation become

of

3 (0 H+4f0,9) =0, 0=(0,5) (20a,b)

(0,8 =1,

Equations (17}{21) are coupled with (4)(6) through
the following interface conditions

0(c0, &) = (2la, b)

r=ro: T(x,0)= Te(x) 22)
r=ry: —k%z—h(x)(T} T.) (23)

where equation (22) requires that temperature is
continuous while equation (23) requires that heat flux is
continuous across the fin—fluid interface. Equations
(22) and (23) in terms of the new variables defined in
(12)(14) are

B(8) = 6(0, &)

A
W@ = /Pr ¢ \/90(5)]

where Pr = v/a is the Prandtl number. Equations (4)-
(6) and (17)+21) with (24) and (25) constitute the
governing equations and boundary conditions for the
present problem.

(24)

(25)

Local nonsimilarity solution

Equations (17)+21) show that the boundary-layer
flow in the porous medium does not admit a similarity
solution. The nonsimilarities arise from the surface
curvature of the cylindrical fin, the buoyancy force term
and the nonuniform temperature distribution of the fin.

Equations (17)+21) will now be approximated by a
set of ordinary differential equations by the local
nonsimilarity method [7, 8]. Following the standard
procedure [7, 8], one can derive an approximate set of
ordinary differential equations for each ‘level of
truncation’, which is designated for the elimination of
terms involving (&-derivatives in the governing
equations at different stages of development.

For the first level of truncation, the terms involving
0f/0¢ or 00/0¢ are deleted in equations (18) and (20a)
which lead to

fr=0 (26)

(14 /En0" +Gf+4/68 =0 7
J0,9 =0, 60,&) =06 (28a, b)
S(0,8)=1 8wo,)= (29a, b)

where the primes are the derivatives with respect to n. It
is pertinent to note that & plays the role ofa parameter in
equations (26)29).

For the second level of truncation, new functions
G = 0f/3¢ and ¢ = 00/0¢ are introduced in equations
(18) and (20a). With this insertion, all terms in (18) and
(20a) are retained without approximation. Additional
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equations and boundary conditions for the new
unknowns G and ¢ are generated by taking derivatives of
(17H21) with respect to ¢ and discarding the terms
containing dG/0¢ and 8¢/0¢. This leads to the following
equations and boundary conditions for the second level of
truncation:

=00 (30)
(1+A/Enf +Gf +4/00 = &f'9—0G) (31)
= Q¢ (32)

(1 +i/EN¢" + GBS + A/E+EG)Y

. ,(z _L>9'3
= GYp———@ —| =G+ (33)
(f'+&G)e NG 25
with
f0,5)=0, G0,9)= (34a,b)
de,
00,8 = 648, (0,8 = ‘(é) (352,b)
fl(waé)=1s G,(w9é)= (36a,b)
B0, 8 =0, P(c0,8) =0. (37a,b)

Similarly, the equations and boundary conditions for the
third level of truncation are

fr= (38)
(L+A/EMO" + G +4/O0 = Ef'$—0G) (39)
= Q¢ (40)

(1+4/ENd" +Bf +A/E+EG = (f +EG)

3G+L +§H>0’+éfx EHO

2/¢
@1)
= Qy’ 42)
(1+A/Eny’ +Gf+A/E+EG)Y

2fﬂ<

' L ppv Ao, ( A ) '
=2 Gl — L’ —| 3G+ —=+2H|¢
(f +&EG)y \/Ed) \/E

m_,
VG

+QG +EH Y+ —=

5 A
AZg-———_\@ (43)
(2 4\/?3>
with
f0,9)=0, G(0,8)=0, H(O &= (44a,b,¢)
d2%6,
80,8) = 64¢), 90,8y = d 7 (é), x©0,8 = 2; ©
(45a,b c)
f(0,8) =1 G(0,{)=0, Hi(w,{)=
(46a, b,c)
00,8 =0, (0,8 =0, xlo,f)=
(47a,b,c)

where H = 0G/0& and x = 0¢/3¢.
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RESULTS AND DISCUSSION

Both the heat conduction equation for the fin and the
local nonsimilarity equations for the convective flow in
the porous medium are second-order ordinary differential
equations with two-point boundary conditions. These
coupled equations can be converted into an integral form
and numerical solutions can be obtained by iteration. The
details of the procedure are described in ref. [6] and will
not be repeated here. Computations were carried out up
to the third level of truncation with selected values of 4, Q,
Nccand at a Prandtl number of 5.5. The following are the
results based on the third level of truncation.

Fin temperature distributions

Figures 2 and 3 present fin temperature distributions
for A = 2.0 and 5.0 and for representative values of Ncc
and Q. It is observed that the fin temperatures increase
monotonically from the tip (£ = 0.0) to the base (£ =
1.0)for all cases. Also, it is seen that larger values of Ncc
give rise to larger fin temperature variations. This
behavior is evident from the definition of Nec which
shows that higher values of Ncc correspond to low fin
conductances and high convection effects, thus
resulting in increased temperature variations. In
addition, higher values of Q@ amplify these variations
due to the fact that buoyancy force enhances the heat
transfer rates. The figures also show that higher values
of 1 also give rise to more significant fin temperature
variations.

Local heat transfer coefficients
The local heat transfer coefficient is defined as

T
_k%
r
h(x) = rTro 4
W)= 8)
which in a dimensionless form becomes
0'(&, 0
5 [0 0] @)

k\/‘ N

Representative distributions for A = 2.0 and 5.0, and
selected values of Nccand Qare presented in Figs.4 and
S. The figures show that when Q = 0.0 (pure forced
convection), the heat transfer coefficients decrease
monotonically from large values near the tip to some
finite values at the root for all values of Nccand 4. For a
mixed convection flow (Q # 0.0) an increase of Ncc,
representing an increase of fin temperature variations,
gives rise to an enhanced buoyancy force along the
streamwise direction. Therefore, at a high value of Ncc
(Ncc = 1.5, for example) the local heat transfer
coefficients decrease at first, attain a minimum value,
and then increase with increasing streamwise direction.
Itis also observed that as Ncc increases, the location of
the minimum shifts toward the tip, and the extent of the
downstreamrise becomes greater. Also, for given values
of Necc and Q, higher local heat transfer coefficients are
seen at higher values of A.
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F1G. 3. Fin temperature distributions for A = 5.

FIG. 4. Local heat transfer coefficients for A = 2.
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FIG. 5. Local heat transfer coefficients for A = 5.

Local heat fluxes
The local heat flux can be expressed as

oT
=—k & - (50)
which can be cast in dimensionless form as
qL [-6(0,0]
— = = /P22 (5
. MT,—To)/Re JE

The results of dimensionless local heat fluxes are
givenin Figs. 6and 7.Itcan be seen that for a given A, the
buoyancy force increases the local heat flux. Also, as the
value of Ncc is increased, most of the heat transfer to
the fluid takes place in the neighborhood of the fin root.
This is due to the fact that a larger Ncc, representing a
lower thermal conductivity of the fin, results in a higher
temperature near the root.
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FIG. 6. Local heat fluxes for A = 2.
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Fic. 7. Local heat fluxes for 4 = 5.

Ifthe results in Fig. 6 are compared with those in Fig.
7, one can see that the local heat flux is higher for a
higher value of 1. However, one should note that the
radius of a fin could be different for each A. Thus, lower
values of the local heat flux for low As do not necessarily
imply that the total heat flux over the fin surface is lower
than that for larger As. This will be discussed further
below.

Total heat transfer rate
The total heat transfer rate can be obtained from

L L aT
Q =2mr, J g(x)dx = —anokj <¥> dx (52)
(4] r=ro

0

which can be rewritten in dimensionless form as

0
—_ = =2 /PrF(Q,AN 53
nrok(T,— T, )./ Re rH © )
where
16'(0,¢)
F(Q, 4, Ncc) = J —d¢ (54
o 2

In the above expressions, both the LHS of equation (53)
and the parameter Ncc contain r,. Thus, the effect of
curvature on the total heat transfer rate cannot be
observed directly from equation (53). To get rid of the
ro-dependence, both the LHS of equation (53) and Ncc
are divided by 4 to give

e __ "

LT =T nF[Q, 4, (Pe Re)'*k/k¢] (55)
where Ncc/A = (Pe Re)'2k/k; with Pe = u, L/« denot-
ing the Péclet number. Equation (55) is plotted as
Q/4kL(T,— T.,) vs (Pe Re)'2k/k; at selected values of
and Qin Fig. 8. It is shown that smaller values of A gives
rise to higher value of the total heat transfer rate. Thisis
expected, as a smaller value of A represents a larger
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F1G. 8. Total heat transfer rates.

value of r, (i.e. a larger convection surface), and
therefore results in a larger value of the total heat
transfer rate.

Fin efficiency
The fin efficiency is defined as

rleff = Q/Qiso (56)

where Q,;, denotes the total heat transfer rate resulting
from an isothermal fin. The results of 7. vs
(Pe Re)'?k/k; are presented in Fig. 9 for representative
values of 4 and Q. These results indicate that a high
value of A (representing a smaller radius) gives rise to a
smaller fin efficiency as expected. Also, the efficiency
decreases as Q or (Re Pe)'/?k/k; is increased.

CONCLUDING REMARKS

The present analysis has yielded the solution of
conjugate, mixed convection—conduction heat transfer
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FIG. 9. Fin efficiencies.
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about a vertical, cylindrical fin embedded in a porous
medium. The trends of the results obtained in this paper
are similar to those of plate fin solutions obtained in a
previous study [6]. It should be noted that the plate fin
solution may be obtained from the present analysis
simply by letting 4 = 0, which implies an infinite radius,
or equivalently a flat plate.
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CONDUCTION THERMIQUE COUPLEE A LA CONVECTION MIXTE, LE LONG D’'UNE
AILETTE CYLINDRIQUE DANS UN MILIEU POREUX

Résumé—On étudie analytiquement le probléme de la convection mixte autour d’une ailette verticale,
cylindrique, noyée dans un milieu poreux, a partir de la théorie du couplage convection—conduction. Une
solution locale non affine, jusqu’au troisiéme niveau de troncature, est obtenue pour la convection dans le
milieu poreux. Le systéme d’équations différentielles est couplé a Péquation monodimensionnelle de
conduction dans l'ailette 4 travers les conditions 4 Iinterface. On illustre les effets du paramétre de couplage
convection—conduction,dela courbure dela surface et du paramétre de convection mixte, sur la distribution de
température, sur le coefficient de transfert local, sur le flux local, le transfert thermique global et sur Pefficacité
de Pailette. Les résultats de la présente étude ont des allures semblables 4 ceux relatifs aux fluides classiques.

WARMEUBERTRAGUNG DURCH MISCH-KONVEKTION UND WARMELEITUNG
ENTLANG EINER ZYLINDRISCHEN RIPPE IN EINEM POROSEN MEDIUM

Zusammenfassung—Die Misch-Konvektion an einer vertikalen, zylindrischen Rippe in einem pordsen
Medium wird analytisch mit Hilfe der Theorie der gekoppelten Wirmetibertragung durch Konvektion und
Leitung untersucht. Fiir die Konvektionsstrémung im pordsen Medium wird eine 6rtliche nichtdhnliche
Losung ermittelt. Der gewonnene Satz gewdhnlicher Differentialgleichungen wird mit der Gleichung fiir
die eindimensionale Wirmeleitung in der Rippe iiber Schnittstellenbedingungen gekoppelt. Die Einfliisse
der Parameter der gekoppelten Wirmeiibertragung, der Oberfichenform und der Misch-Konvektion auf
die Temperaturverteilung in der Rippe, den ortlichen und den gesamten Warmeiibergangskoeffizienten,
die ortliche Wirmestromdichte sowie auf den Rippenwirkungsgrad werden dargestellt. Die Ergebnisse
dieser Untersuchung zeigen Abhadngigkeiten dhnlich wie bei klassischen Fluiden.

COTMPSAXEHHBIN TEIUIOIMEPEHOC CMEIIAHHOW KOHBEKLIMEN U
MMPOBOAUMOCTBIO OKOJIO UUJIMHAPUYECKOI'O PEBPA B ITOPUCTON CPEJIE

Annorauns—Ha ocHoBe conpskeHHOH MOCTAHOBKH KOHBEKTHBHO—KOHAYKTHBHOTO TENJI0OOMEHa aHAIIN-
THYECKH H3y4aeTcs 3aJavya CMCEILIAHHOKOHBEKTHBHOIO TEYEHHS Y BEPTHKAJLHOTO LMIMHIPHYECKOTO
pebpa, Morpy>XeHHOro B MOPHCTYIO cpedy. [l KOHBEKTHBHOTO TEYeHMs B MOPHCTOH cpeile MOJy4EHO
JIOKAJIbHOE HEABTOMOJE/IbHOE pEllicHUe. BriBeleHHasA B pe3ynbTaTe CHCTeMa OObLIKHOBEHHBIX AHpdepeH-
LUHMAIbHBIX ypaBHEHHH OObeNHHAETCA C YPaBHEHHEM OJHOMEPHOro TemonepeHoca B pebpe uepes
rpaHndHble ycnoBuA. [1oka3zaHo BIMAHHE CONPAKEHHOrO KOHBEKTHBHO—KOHAYKTHBHOTO IapaMeTpa, Kpu-
BH3HBI MOBEPXHOCTH M KO3()(HIHEHTAa CMEIIAaHHOH KOHBEKLMH Ha pacnpeiesieHHE TeMIepaTypbl pedpa,
JIOKaNIbHBIH KOIDOUILMEHT TEIIONepeHoca, JTOKaIbHbIH TennoobMeH, obuMit Tenroneperoc u 3¢dexTHB-
HOCTb pebpa. Pe3ynbTaTel aHaIOTHYHBI JAHHBIM /LIS KHAKOCTEH.



